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In this article, a new index, the visible and shortwave infrared drought index (VSDI), is
proposed for monitoring both soil and vegetation moisture using optical spectral bands.
VSDI is defined as VSDI = 1 − [(ρSWIR − ρblue) + (ρred − ρblue)], where ρ represents
the reflectance of shortwave infrared (SWIR) red and blue channels, respectively. VSDI
is theoretically based on the difference between moisture-sensitive bands (SWIR and
red) and moisture reference band (blue), and is expected to be efficient for agricultural
drought monitoring over different land-cover types during the plant-growing season.
The fractional water index (FWI) derived from 49 Mesonet stations over nine climate
divisions (CDs) across Oklahoma are used as ground truth data and VSDI is com-
pared with three other drought indices. The results show that VSDI generally presents
the highest correlation with FWI among the four indices, either for whole sites or for
individual CDs. The NDVI threshold method is applied to demonstrate the satisfactory
performance of VSDI over different land-cover types. A time-lag analysis is also con-
ducted and suggests that VSDI can be used as a real-time drought indicator with a time
lag of less than 8 days. The VSDI drought maps are produced and compared with the
US Drought Monitor (USDM) maps. A good agreement has been observed between the
two products, and finer spatial information is also found in VSDI. In conclusion, VSDI
appears to be a real-time drought indicator that is applicable over different land-cover
types and is suitable for drought monitoring through the plant-growing season.

1. Introduction

Drought is a slow-onset natural hazard with effects that accumulate over a considerable
period of time (weeks to years) (Wardlow, Anderson, and Verdin 2012). It can be classi-
fied into three physically based categories: meteorological, agricultural, and hydrological
drought (Dracup, Lee, and Paulson 1980; Wilhite 2000). In this article, we focus primarily
on agricultural drought, which refers to a period characterized by declining soil moisture
and consequent crop failure without any reference to surface water resources (Mishra and
Singh 2010). Agricultural drought is generally a short-term dryness (e.g. a few weeks’
duration), but occurs at a critical time during the growing season and can severely reduce
crop yields (Heim 2002). In the Canadian prairies, the season droughts during 1988 and
2001 each resulted in more than $5 thousand million in agricultural losses (Wheaton et al.
1992; Phillips 2002). In 1995, the US Federal Emergency Management Agency (FEMA)
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4586 N. Zhang et al.

estimated that US drought events caused a loss of $6–8 thousand million on average each
year (FEMA 1995).

Satellite remote sensing is an effective way to monitor drought, considering its large
spatial coverage and relatively high temporal and spatial resolution. Numerous satellite-
based methods have been developed to describe land-surface moisture conditions. Gutman
(1990) gave an overview of drought monitoring methods using the first generation of remote
sensing satellites, and this was followed by an update by Kogan (1997). Recent reviews
were provided by Niemeyer (2008) that summarized the then latest drought indices from
different disciplines, Wang and Qu (2009) presented a review on soil moisture monitoring
based on remote sensing, and Zhang et al. (2010) reviewed vegetation moisture monitoring
using optical remote sensing.

Optical remote sensing with wavelengths between 0.4 and 2.5 µm has commonly been
used in operational drought monitoring (McVicar and Jupp 1998; Kogan 2000; Heim 2002;
Zhang et al. 2010), as in the vegetation drought response index (VegDRI) (Brown et al.
2008) and the US Drought Monitor (USDM) (Svoboda et al. 2002). Drought indices based
on optical remote sensing can generally be classified into three categories by their targets:
one is for soil moisture monitoring, the second is on vegetation drought monitoring, and
the third is for both soil and vegetation moisture monitoring.

For vegetation drought monitoring with optical remote sensing, the normalized dif-
ference vegetation index (NDVI) is the most extensively applied vegetation index, which
uses the normalized difference between near-infrared (NIR) and red reflectance (McVicar
and Bierwirth 2001; Ji and Peters 2003; Wan, Wang, and Li 2004; Wang et al. 2007; Gu
et al. 2007, 2008; Brown et al. 2008). NDVI-based indices such as the anomaly vegeta-
tion index (AVI) (Chen, Xiao, and Sheng 1994; Anyamba, Tucker, and Eastman 2001) and
the vegetation condition index (VCI) (Kogan 1990, 1995) were also developed to normal-
ize vegetation seasonal variation and better characterize drought patterns. The application
of NDVI and NDVI-based methods for drought monitoring is made under the assumption
that water stress is the only factor that interferes with the plant-growing process. However,
in the real world other factors such as insects, wild fires, and pollution may also inter-
rupt plants’ normal growth and add uncertainties to drought interpretation. Besides, the
time lag between the occurrence of drought and NDVI response (Di, Rundquist, and Han
1994; Wang, Price, and Rich 2001; Adegoke, and Carleton 2002; Wang et al. 2007) makes
NDVI and NDVI-based indices unsuitable for real-time drought monitoring (Ghulam et al.
2007b).

By using a combination of NIR and shortwave infrared (SWIR) bands, a new set of
vegetation drought indices are proposed as an advanced and direct vegetation moisture
indicator over NDVI, including the leaf water content index (LWCI; Hunt, Rock, and Nobel
1987), the normalized difference infrared index (NDII; Hardisky, Klemas, and Smart 1983),
the global vegetation moisture index (GVMI; Ceccato et al. 2002), and the SWIR perpen-
dicular water stress index (SPSI; Ghulam et al. 2007a). Among the above indices, NDII
is the most popular and has been studied and referred to under different names. Hardisky,
Klemas, Smart (1983) proposed NDII with the equation NDII = ρ850 − ρ1650

/
ρ850 + ρ1650

to estimate canopy water content; Gao (1996) developed the normalized difference water
index (NDWI) to quantify vegetation moisture with NIR reflectance at 860 and 1240 nm
as NDWI = (ρ860 − ρ1240)/(ρ860 + ρ1240); Fensholt and Sandholt (2003) adopted MODIS
band 2 (NIR) and band 5 or 6 (SWIR) reflectance to calculate the shortwave infrared
water stress index (SIWSI) in SIWSI(5/6, 2) = (ρSWIR5/6 − ρNIR2)/(ρSWIR5/6 + ρNIR2);
Xiao et al. (2004a, 2004b) used the NIR and the MIR bands for SPOT-4 VEGETATION data
and bands 2 and 6 for MODIS data in NDII, and defined this as the land surface water index
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(LSWI) in the form LSWI = (ρNIR − ρSWIR)/(ρNIR + ρSWIR). Despite variation in specific
wavelengths or sensor-dependent bands used to calculate NDII, one thing in common is
that the NIR band serves as a moisture reference band and the SWIR band is used as the
moisture-measuring band. All the above indices have proved to be effective in monitoring
vegetation water content in a variety of studies (Hunt and Rock 1989; Zarco-Tejada, Rueda,
and Ustin 2003; Jackson et al. 2004; Maki, Ishiahra, and Tamura 2004; Chen, Huang, and
Jackson 2005; Zhao et al. 2009), whereas uncertainties are considerably increased in the
presence of soil. In other words, vegetation drought indices are more applicable over mod-
erate to densely vegetated surfaces, but not over sparsely vegetated or bare soil surfaces,
because soil effects are not considered during their calculation (Gao 1996; Ghulam et al.
2007a, 2008a).

For soil moisture monitoring, Ghulam, Qin, and Zhan (2006) designed the perpendic-
ular drought index (PDI) based on the NIR-Red spectral reflectance space. PDI is quite
efficient over bare soil surfaces, but it does not perform well over vegetated areas (Ghulam
et al. 2008b; Qin et al. 2008). To solve this problem, Ghulam et al. (2007b) introduced
the vegetation fraction into PDI and proposed the modified perpendicular drought index
(MPDI), which is capable of measuring water content over differing land surfaces from
bare soil to moderately vegetated areas. However, the operational application of PDI and
MPDI are still challenged by their assumption of an invariant soil line, which in fact varies
with soil type, soil fertility, and land topography. In addition, the determination of the soil
line is also user dependent to some extent. To avoid these uncertainties, the distance drought
index (DDI; Yang et al. 2008) was developed based on the NIR-Red spectral space. This
index is also applicable in the presence of vegetation, which is an improvement on PDI
and, more importantly, it is independent of the fixed soil line (Qin et al. 2010). The assump-
tion regarding the full range of soil moisture variation, however, may limit the application
of DDI. By using the normalized difference between MODIS bands 6 and 7, Du et al.
(2007) proposed the surface water capacity index (SWCI) specialized for surface soil mois-
ture monitoring using MODIS data. This index has proved to be highly correlated with
soil moisture at the 0–50 cm layer (Zhang et al. 2008). Compared with vegetation water
indices, soil moisture indices may have a more direct and rapid response to water deficiency
because plants have an ability to resist drought that may cause a delay in the identification
of drought occurrence. However, soil moisture indices are not as efficient as vegetation
moisture indices when applied over densely vegetated surface or the full vegetation area,
which may limit their application over large areas to some extent.

Compared with the first two categories, fewer approaches are proposed for both soil and
vegetation moisture monitoring using optical remote sensing. Wang and Qu (2007) pro-
posed the normalized multi-band drought index (NMDI) to estimate water content for both
soil and vegetation surface. However, this index has inconsistent relationships with soil and
vegetation moisture changes. Specifically, it has a positive correlation with vegetation water
variation while exhibiting a negative correlation with soil moisture changes. Therefore,
when applied to areas with moderate vegetation coverage, considerable uncertainty will
occur, and the roles of NMDI as soil drought indicator and vegetation drought indicator
may blur and result in inaccurate results (Wang and Qu 2007). An alternate approach,
the N-dimensional dryness index (NDDI) (Ghulam et al. 2011), was recently designed
to quantify soil moisture in various canopy coverage conditions based on N-dimensional
spectral space. Many variables are used in this index, including land-surface temperature,
vegetation index, albedo, and other bio/geophysical parameters that may indicate the soil
moisture condition. It is important to consider as many variables as possible to accurately
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4588 N. Zhang et al.

characterize drought status, but simultaneous utilization of multiple variables may hinder
operational drought monitoring if the required variables are not available concomitantly.

In conclusion, a simple, stable, and operational drought indicator that is robust for both
soil and vegetation cover is still worth exploring. This is especially true for agricultural
drought monitoring over large areas or throughout the plant-growing season, where land-
cover types may change from place to place and vegetation coverage may vary temporally.
In these cases, neither vegetation moisture indices nor soil moisture indices (SWCI) may
work well in isolation, due to their restricted fields of application. One possible solution
may be to perform land-cover classification and assign a suitable index for each class,
while another could be to apply different moisture indices at different plant-growing stages.
The classification accuracy and the combined use of different drought indices may add
additional uncertainty to the final results and also add to the complexity of agricultural
drought monitoring.

The objective of this study was to explore the potential of using multi-spectral bands
in the optical domain to quantify surface moisture for both soil and vegetation covers and
to provide an operational solution for agricultural drought monitoring over different land
covers or throughout the plant-growing season.

2. Development of VSDI

2.1. Spectral response to water stress for plants and soil

Vegetation spectral response to water stress has been reported in many studies on different
plants, including spinach (Aldakheel and Danson 1997), snapbean (Ripple 1986), soybean
(Yu et al. 2000), maize (Zygielbaum et al. 2009), and other species of trees, crops, and
plants (Carter 1991, 1993; Ceccato et al. 2001). All the above studies have reported an
overall increase in plant reflectance from 0.4 to 0.25 µm when plants are water stressed.
Figure 1 shows an example of laboratory-measured reflectance spectra (Elvidge 1990)
for fresh and dry redwood leaf. The physiological features of different spectra are also
illustrated in Figure 1.

Figure 1. Examples of laboratory-measured fresh and dry vegetation (redwood) reflectance spectra
measured by Elvidge (1990); ‘R’ and ‘S’, respectively, indicate the increased reflectance between
fresh and dried redwood leaf in the red and SWIR spectra.

Note: The dominant physiological features for different spectra are also labelled in this figure.
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As we can see from Figure 1, with reduced plant water there is an obvious increase
in plant reflectance in the red and SWIR spectrum. A variable pattern of NIR reflectance
can also be observed, but reflectance in the blue spectrum shows an insignificant change.
This is generally consistent with previous studies (mentioned above). Spectral variation at
different wavelengths can be explained by the following.

In regard to the visible spectrum (0.4–0.74 µm), healthy plant reflectance is mainly
governed by pigments, especially the blue (0.4–0.52 µm) and red (0.63–0.69 µm) regions
(Ollinger 2011), where two spectral valleys caused by the strong absorption of chlorophyll
are found (Figure 1). If a plant is subject to water stress that interrupts its normal growth, its
chlorophyll production may be decreased or terminated, which results in reduced chloro-
phyll absorption in the blue and red bands (Lillesand, Kiefer, and Chipman 2008), with
increased reflectance observed in the visible spectrum (Carter 1991). In particular, the red
spectrum is more sensitive to water stress than the blue (Jensen 2007), which results in
more significant reflectance change in the red spectrum (indicated as the distance ‘R’ in
Figure 1) than in the blue.

Reflectance in the NIR spectrum (0.74–1.3 µm) is most sensitive to leaf internal struc-
ture changes (Ripple 1986; Jacquemoud and Baret 1990; Jacquemoud et al. 1995) and
is unresponsive to moisture variations compared with other spectral regions (Elvidge and
Lyon 1985; Carter 1993; Chuvieco et al. 2002). Only when stress has developed suffi-
ciently to cause severe leaf dehydration (which dramatically changes the leaf’s mesophyll
structure) will an obvious increase in NIR spectral reflectance be presented (Jensen 2007).
Furthermore, NIR plant reflectance is also greatly affected by leaf area index (LAI), plant
type, and plant density (Elachi 1987; Jacquemoud 1993; Ceccato et al. 2001). In other
words, the NIR reflectance of plants is indirectly affected by water stress, and its varia-
tion is a combined reflection of multiple factors. This might explain the fluctuation in NIR
reflectance as shown in Figure 1.

For the SWIR (1.3–2.5 µm) spectrum, many studies (Hunt and Rock 1989; Zarco-
Tejada, Rueda, and Ustin 2003; Ghulam et al. 2008a) have proved that it has a strong
relationship with leaf water variation and this band is more sensitive to moisture variation
than the visible or NIR spectrum (Dawson et al. 1999; Ceccato et al. 2001; Chuvieco et al.
2002). This explains the significant reflectance increase at the SWIR spectrum as indicated
by the distance ‘S’ in Figure 1.

Based on the above analysis, SWIR is the most sensitive spectrum to vegetation water
variation, followed by the red. The blue can be viewed as the band least sensitive to vegeta-
tion moisture variation compared with the other bands. In this way, the difference between
the water-sensitive band (SWIR and red) and the less sensitive band (blue) can be used to
maximize moisture variation and reduce the influence of leaf structure, which has an overall
effect through the whole optical wavelength (Aldakheel and Danson 1997; Yu et al. 2000;
Zygielbaum et al. 2009) at the same time.

In regard to spectral response to soil moisture changes, previous research has proved
that the whole spectrum of soil reflectance will diminish with increase in soil moisture at
low moisture stages (Bowers and Hanks 1965; Lobell and Asner 2002; Liu et al. 2002,
2003; Bach and Verhoef 2003; Whiting et al. 2004). Although soil reflectance is also
influenced by other factors, such as soil texture, mineral composition, and organic mat-
ter (Bowers and Hanks 1965; Baumgardner et al. 1985), these factors can be considered
as unchanged with time for a given location, and thus soil reflectance is primarily deter-
mined by soil moisture (Liu et al. 2002). Figure 2 shows soil reflectance curves measured
by Whiting et al. (2004) using a low-sodicity soil sample from Lemoore, USA at different
oven-dried water contents (0.03, 0.12, 0.20, 0.30, and 0.42 g g−1).
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4590 N. Zhang et al.

Figure 2. Soil reflectance with varying oven-dried gravimetric water content (0.03, 0.12, 0.20, 0.30,
and 0.42 g g−1), modified after Whiting et al. (2004).

Note: ‘B’ denotes variation of soil reflectance in the blue spectrum when water stressed, and ‘S’
denotes variation of soil reflectance in the SWIR spectrum when water stressed.

In Figure 2, reflectance increase can be observed throughout the whole spectrum of soil
with decreased soil moisture. In addition, increased reflectance is also reinforced at longer
wavelengths, which indicates that spectral sensitivity to soil moisture is enhanced with
increase in wavelength. In this case, the blue spectral region (0.4–0.52 µm), which presents
the smallest y-axis increment (indicated by distance ‘B’ in Figure 2), is least sensitive to
soil water variation, whereas the SWIR spectrum (1.3–2.5 µm), which presents the largest
increment in the y-axis (indicated by distance ‘S’ in Figure 2), is most sensitive to soil
moisture changes.

When comparing spectral response between soil and vegetation when water stressed, a
common feature is that decrease in water content is connected to an increase in reflectance
over the optical wavelength range (0.4–2.5 µm), especially for the red and SWIR spectrum.
In general, with increasing wavelength, reflectance response is also intensified. Taking
advantage of this common feature, it is possible to use the difference between channels of
different water sensitivity to estimate water content over different land-cover types. This is
the theoretical basis for the visible and shortwave infrared drought index (VSDI) described
below.

2.2. The formation of VSDI

The VSDI is proposed here to monitor moisture variation for both soil and vegetation. It is
developed by using the differences among the three bands located in the blue and red and
SWIR spectra, and is defined as

VSDI = 1 − [(ρSWIR − ρblue) + (ρred − ρblue)], (1)
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where, ρSWIR, ρblue, and ρred are the reflectances of SWIR, blue, and red bands, respectively.
Based on the above analysis, the SWIR and red channels are both sensitive to water varia-
tion for soil and vegetation, and the blue channel is less sensitive to moisture changes for
both. Therefore, the SWIR and red bands can serve as the moisture-measuring channel in
VSDI, while the blue band is used as the reference channel or the benchmark for moisture
variation. The combination of the difference between SWIR and blue (ρSWIR − ρblue) and
the difference between red and blue (ρred − ρblue) may maximize moisture variation and
have the potential to estimate surface water independent of land-cover types. Finally, the
entire item (ρSWIR − ρblue) + (ρred − ρblue) is subtracted from 1 to make VSDI positively
correlated to moisture variation. The ideal VSDI range is defined in Table 1 with a brief
explanation.

As defined in Table 1, the overall range of VSDI is above zero, and the larger the value
the wetter the condition indicated. In this study, land surface can be simplified into four
types: soil, vegetation, a combination of the two, and water. For the first three types, VSDI
is within the range between 0 (dry) and 1 (wet) and has a consistently positive correlation
with moisture variation. This is, intuitively, an advantage over NMDI, which shows an
opposite correlation with water variation in terms of soil and vegetation. For water surfaces
(water and snow water equivalent, including snow and ice cover), the blue reflectance of
which is higher than for red and SWIR, the VSDI value is larger than 1. Since water and
snow can be deemed as an extreme case of wet conditions, this is still in agreement with the
moisture-monitoring ability of VSDI. Using the above definition, the use of VSDI can be
anticipated as a drought index applicable over different land-cover types (the four simplified
types).

It is also worth explaining that the NIR channel was not considered in our study for two
reasons. First, as mentioned above, NIR reflectance does not have a direct response to water
stress and is readily affected by many factors (leaf structure, LAI, plant density, and plant
type), and thus cannot be used as a water-sensitive (or water-measuring) band in VSDI.
Second, NIR is not used as the moisture reference band because it varies greatly among
different land-cover types, especially soil and vegetation. For example, the NIR reflectance
of a healthy plant is much higher than that of bare soil. If NIR is used as the reference band,
the benchmark of plant moisture variation will be much higher than that of soil, which will
make VSDI incomparable among different land-cover types. In other words, land-cover
type-induced variation will overwhelm moisture-induced variation when NIR is used as
the reference band. In contrast, the blue spectrum remains at a consistently low value for
both vegetation and soil and is least sensitive for vegetation and soil moisture variation
(Figures 1 and 2) compared with NIR, and thus it is preferable to NIR as the reference band
in the construction of VSDI.

In the application of the VSDI, the 1.5–1.8 µm SWIR domain is suggested as the SWIR
channel in VSDI. This is because with increased wavelength, solar radiation is reduced but
contamination from atmospheric water vapour is worsened (Roberts, Green, and Adams

Table 1. The definition of ideal VSDI range.

0 < VSDI ≤ 1 The larger the value, the wetter the conditions indicated (for surfaces on
farmland or any surface that can be simplified as soil, vegetation, or a
combination of the two)

VSDI > 1 Water or snow water equivalent (including water body, snow, and ice
cover)
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4592 N. Zhang et al.

1997; Sims and Gamon 2003). Therefore, the water measurement band selected in the
shorter regions of the SWIR domain or the longer wavelengths of the NIR domain may pro-
vide more accurate moisture information (Tucker 1980; Jackson, Slater, and Pinter 1983;
Sims and Gamon 2003; Ghulam et al. 2008a). Ghulam et al. (2007a) has proved that the
TM/ETM+ band 5 (1.55–1.75 µm) has a stronger correlation with leaf water content than
band 7 (2.08–2.35 µm). Zhao et al. (2009) also suggested that the SIWSI index calcu-
lated using MODIS band 6 (1.63–1.65 µm) yielded better moisture estimation than band
7 (2.11–2.16 nm). Therefore, considering different remote sensors, the use of band 5 for
Landsat data and band 6 for MODIS data is suggested as the SWIR band when calculating
VSDI.

3. Validation

3.1. Test sites and validation data

Our study area is located in Oklahoma, which lies in the South Central region of the USA.
As a drought-prone region, Oklahoma is an ideal location for new drought index test-
ing and validation. In 2011, Oklahoma suffered an exceptional drought, the state-wide
average precipitation from January to October reaching about 13 inches below nor-
mal (OCS Monthly Climate Summaries, http://climate.ok.gov/index.php/climate/summary/
reports_summaries). Therefore, the validation period selected in this study was 6 March to
8 November 2011. Oklahoma climatology varies significantly across the state, with temper-
atures increasing from north to south (Figure 3(a)) and precipitation increasing from west
to east (Figure 3(b)). Therefore, nine climate divisions (CDs) for Oklahoma (Figure 3) were
used in this study to compare drought indices, considering that weather and climate patterns
are homogeneously distributed in the same CD.

An extensive environmental observation network is well established and distributed
over Oklahoma, known as the Oklahoma Mesonet (Brock et al. 1995). The Oklahoma
Mesonet consists of 120 automated stations with at least one in each of Oklahoma’s
77 counties. This network provides quality-controlled measurements of meteorological and
land-surface parameters such as precipitation, temperature, and soil moisture every 5 min
(http://www.mesonet.org/). The soil moisture instruments installed in Mesonet stations are
229-L heat-dissipation sensors, by which soil moisture variation is recorded in the form of
temperature difference (�T). In this case, the fractional water index (FWI) (Schneider et al.
2003) specialized for the heat-dissipation sensor is used to quantify in situ soil moisture.
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Figure 3. Mean temperature (Figure 3(a)) and mean precipitation (Figure 3(b)) over 30 years
(1971–2000) for the nine climate divisions (CDs) of Oklahoma.

Note: The climate data were obtained from the US Geological Survey (USGS) website (http://water.
usgs.gov/GIS/metadata/usgswrd/XML/climate_div.xml).
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FWI is a relative measure of soil wetness and is independent of soil texture at each site,
and is thus comparable among different Mesonet stations. FWI can be calculated using
Equation (2),

FWI = (�Td − �Tsensor)/(�Td − �Tw), (2)

where �T sensor represents sensor-measured temperature difference (◦C), �Td is the sen-
sor response constant (3.96◦C) in dry conditions, and �Tw is the sensor response constant
(1.38◦C) in wet conditions. The value of FWI ranges from 0 (very dry soil) to 1 (purely
saturated soil). Considering the high level of noise for soil moisture at 5 cm due to its sen-
sitivity to environmental change, and the imperceptibility of optical remote sensing signals
at 60 cm or deeper, only daily FWI at 25 cm was calculated and used as ground truth data
for soil moisture.

In this study, four criteria were applied to select the validation sites from the
120 Mesonet stations. (1) The validation sites should be evenly distributed within the nine
CDs. In this way, 4–9 stations were selected from each CD. (2) A continuous soil mois-
ture measurement should be available for the selected stations during our validation period.
The time gap for the 25 cm FWI data on the selected sites was under 1 month. (3) Stations
located in sandy areas should be excluded since the 229-L heat dissipation sensors installed
in Mesonet stations do not perform well in sandy soils (Schneider et al. 2003). In this sense,
the sand percentage of the selected sites at the 25 cm layer was less than 50%. (4) The
selected stations should be located in plant-growing areas, and sites located within urban
areas to be excluded for the purpose of examining the applicability of a drought index
throughout the plant-growing season. The cropland data layer (CDL) was used to identify
the land cover for each site in Oklahoma (Figure 4). CDL is a geo-referenced, crop-specific
land-cover classification product released by the National Agricultural Statistics Service
(NASS) (Johnson and Mueller 2010) and accessible from the Geospatial Data Gateway at
http://datagateway.nrcs.usda.gov/. The 2011 CDL of Oklahoma has a high spatial resolution
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Figure 4. Locations and names of the 49 Oklahoma Mesonet stations; the land-cover type for each
site was identified from the 2011 cropland data layer (CDL) of the National Agricultural Statistics
Service (NASS) (Johnson and Mueller 2010).
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of 30 m and an overall accuracy of 82.9% (http://www.nass.usda.gov/research/Cropland/
metadata/metadata_ok11.htm). These criteria were strictly applied to site selection, and
finally 49 Mesonet stations were selected from 120, indicated by black dots in Figures 3
and 4. The land-cover type for each site is also labelled in Figure 4 and Table 2.

To be consistent with the temporal sample of MODIS products, daily 25 cm FWI for
the selected 49 sites was averaged every 8 days, and the data gap linearly interpolated by
nearby dates. The Savitzky–Golay approach (Savitzky and Golay1964; Gorry 1990) with a
polynomial order of 1 and a window size of 3 was then applied to the complete 8 day FWI
data set to reduce additional turbulence and noise.

The remote sensing data used in this study were MODIS 8 day surface reflectance
products (MOD09A1) collected from http://ladsweb.nascom.nasa.gov/data. The spatial res-
olution of MOD09A1 is 500 m for bands 1–7 covering the visible, NIR, and SWIR
spectral domains. Two tiles covering Oklahoma (h10v05 and h09v05) were mosaicked
and the MODIS time-series data (a total of 31 images) was produced during our valida-
tion period (6 March to 8 November 2011). A quality control process was applied to filter
the ‘cloud’ and ‘high-aerosol’ pixels identified from the MODIS quality assurance data
product. To reduce additional atmospheric noise, the MODIS time-series data were also
smoothed using the Savitzky–Golay filter (polynomial order 1, window size 3). The time
series of VSDI, LSWI, SWCI, and NMDI data were then calculated for the 500 m pixel
that geographically corresponded to each study site. It is also assumed in this study that
the field measurements at each station represent a MODIS pixel with an average value of
500 × 500 m. The equations for LSWI, SWCI, and NMDI based on MODIS data are as
follows:

LSWI = ρNIR − ρSWIR6

ρNIR + ρSWIR6
, (3)

SWCI = ρSWIR6 − ρSWIR7

ρSWIR6 + ρSWIR7
, (4)

NMDI = ρNIR − (ρSWIR6 − ρSWIR7)

ρNIR + (ρSWIR6 − ρSWIR7)
, (5)

where ρNIR, ρSWIR6, ρSWIR7 are, respectively, the reflectance for the MODIS NIR and SWIR
regions at bands 6 and 7.

3.2. Correlation coefficient (r) analysis

To validate the performance and reliability of VSDI, it was necessary to compare it with
ground measurements and other widely used drought indices. For this purpose, a 25 cm
FWI was used as ground truth soil moisture, and one commonly used vegetation drought
index (LSWI), one SWCI, and one drought indicator for both soil and vegetation moisture
(NMDI) were selected for comparison with VSDI.

3.2.1. Comparison among sites and CDs

The correlation coefficient (r) was first calculated between the four drought indices and the
25 cm FWI over 49 sites and nine CDs. Figure 5 shows the scatter plot for the four indices
with the statistics from 49 Mesonet stations (1519 samples, 49 sites × 31 periods/site).
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Figure 5. Scatter plots of the four drought indices (VSDI, LSWI, SWCI, and NMDI) and 25 cm
FWI with statistics from 49 sites (a total of 1519 samples, 49 sites × 31 periods/site).

From Figure 5, we can see that VSDI presents the strongest correlation with FWI (r =
0.54), followed by LSWI (r = 0.40) and SWCI (r = 0.37), while NMDI was weakest (r = –
0.13). This infers that VSDI has a better overall capability of drought monitoring compared
with other indices. The higher r value of LSWI compared with SWCI can be explained by
our site selection, since all sites are located in plant-growing areas, the condition of which is
generally more favourable for the application of the vegetation drought index (LSWI) than
the SWCI. The weak agreement between NMDI and FWI may be ascribed to the diverse
vegetation coverage at each site, which blurs the role of NMDI as a vegetation and soil
moisture indicator. In addition, the value range for each index based on the statistics of
49 stations was obtained, which can also be seen from Figure 5: VSDI ranges from 0.47 to
0.9; LSWI ranges from −0.3 to 0.25; SWCI ranges from 0 to 0.45; and NMDI ranges
from 0.18 to 0.9. The value range of VSDI is within the ideal range of VSDI between 0
(extremely dry) and 1 (wet) on farmland (Table 1). Given the limited vegetation and soil
types covered in this study in Oklahoma, the ideal range of VSDI in Table 1 can be deemed
reasonable.

Correlation analysis (Table 2) was also carried out for each site and each CD. The
Fisher (F) test was conducted to test this linear regression with its probability (p-value),
as listed in Table 2. For each site there were 31 periods during the validation period, and
thus 31 samples (one sample per 8 day period); and for each CD, statistics were calculated
as CD-specific site number multiplied by 31 periods/site. The bold font indicating linear
correlation between drought index and the FWI is not significant at the 0.05 level (p-value
> 0.05).

From Table 2, we can see that VSDI, LSWI, and SWCI generally have positive cor-
relations with 25 cm FWI over the 49 sites, while NMDI shows inconsistent correlation
with FWI (positive r at some sites and negative at others). Among the 49 stations, VSDI
was weakly correlated with FWI (insignificant r) at four sites (HOOK, COPA, MARE, and
OKMU), which are located in CD 1, CD 3, CD 5, and CD 6, respectively. The reason for
these weak correlations is not very clear and may be partly due to the different phenologic
features of the mixed land-cover types (Table 2) at these sites. For example, the pixels of the
HOOK site combine grass and idle land, and the COPA site has mixed pixels of grass and
forest which have different phenologic stages. Compared with VSDI, more uncertainties
exist in the performance of LSWI, SWCI, and NMDI, with insignificant r values shown
at 19, 22, and 22 sites, respectively. This comparison demonstrates that VSDI shows more
consistency in drought monitoring from site to site in comparison with LSWI and SWCI.

In regard to CD (the final eight columns in Table 2), VSDI shows consistent and strong
agreement with FWI variation over all CDs, whereas LSWI and SWCI present a weak cor-
relation with FWI at CD1 and CD6, respectively. In regard to NMDI, although its absolute
r value (|r|) is significant across all CDs, its instability can still be observed: negative r at
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Figure 6. Radar chart of the correlation coefficients (r) between the four drought indices (VSDI,
LSWI, SWCI, and NMDI) and FWI over 49 validation sites (plot (a)) and the nine climate divisions
(plot (b)).

Notes: The radials represent the r range from −1 to +1 for plot (a), and from −0.4 to 0.8 for plot (b).
In plot (a), the 49 sites were first clustered by climate division (indicated by the number preceding the
station ID) and then ordered in ascending sequence of site longitude. In plot (b), the r for each climate
division (CD) was plotted for the four indices indicated by the ‘drought index name CD’. In both
charts, VSDI r values are concentrated along the outer contour among the four indices, indicating its
better performance among sites and climate divisions.

CD 1, CD 2, CD 4, and CD 7 and positive at the remainder. In this sense, VSDI appears to
be more operational than the other drought indices over different climate systems.

To obtain an overall image of the performance of the four indices among sites and CDs,
the datasets in Table 2 are plotted into two radar charts (Figures 6(a) and (b)). The radials
of the radar charts represent the r range from −1 to +1 for Figure 6(a) and from −0.4 to
+0.8 for Figure 6(b).

A similar conclusion can be drawn from Figure 6. As we can see, VSDI r values are
concentrated along the outer contour among the four indices in either Figure 6(a) (over
49 sites) or Figure 6(b) (over nine CDs). This demonstrates that VSDI is relatively stable
and shows a better performance over diverse sites and diverse climate systems compared
with other indices. On the other hand, the higher variability of NMDI r values can also be
observed in Figure 6(a) and (b). Therefore, much uncertainty may occur if applying this
index from site to site or over different climate systems. Consistent with the findings of a
previous study (Shahabfar, Ghulam, and Eitzinger 2012) that the performance of remote
sensing drought indices may vary among different climate regions, a close examination of
Figure 6(b) also reveals this variation in VSDI. Although VSDI has significant correlation
with FWI for all CDs, its r values at CD 1, CD 3, and especially for CD 6, are lower than
those for other regions. Two factors may have contributed to this phenomenon. The first
is the inclusion of sites having weak correlation with FWI in this CD, such as HOOK in
CD 1 and COPA in CD 3. These weak correlations, as we mentioned above, may be partly
ascribed to the different phenologic features of mixed land cover. The second reason is
that since VSDI does not include thermal bands, it may not perform well in temperature-
driven drought areas where precipitation is relatively sufficient and high temperature is
the dominant factor in water stress. This may be the case for CD 3 and CD 6, which are
characterized by higher precipitation and higher temperatures (Figure 3), and thus high
VSDI r values cannot be expected. Overall, the results from Table 2 and Figures 5 and 6
can still verify good agreement between VSDI and soil moisture variation (FWI).
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3.2.2. NDVI threshold analysis

To further illustrate the applicability of VSDI to different land-cover types, the NDVI
threshold method (Sobrino, Raissouni, and Li 2001; Momeni and Saradjian 2007; Javadnia,
Mobasheri, and Kamali 2009) was applied in this study to separate land surface into differ-
ent types of land cover. Considering that all validation sites were selected in plant-growing
areas during the plant-growing season, the land-cover types in this study may not include
water or snow water equivalents. Therefore, three land types (Table 3) were finally deter-
mined according to the NDVI threshold method: among the total of 1519 samples (49 sites
× 31 periods/site), 32 samples were identified as bare soil (or soil cover) with NDVI < 0.2;
1111 were classified as partially vegetated soil (or mixed cover) with 0.2 ≤ NDVI ≤ 0.5;
and the remaining 376 samples were classified as dense vegetation (or vegetation cover)
with NDVI > 0.5. Since plant moisture is not available from Mesonet measurements, the
25 cm FWI was used as an indicator of canopy water at the vegetation cover, assuming that
plant moisture has a close relationship with surface soil moisture (Fensholt and Sandholt
2003). The correlation analysis results between the four drought indices and 25 cm FWI
over the three land-cover types are presented in Table 3.

From Table 3, we can see that with increase in NDVI, only VSDI displays a grad-
ual reduction in r values, while the other indices show either a sharp decrease (SWCI) or
sharp increase (LSWI) or even demonstrate a converse correlation with increase in vegeta-
tion coverage (NMDI). For VSDI, its strongest correlation with FWI was observed for soil
cover with 0.51, which is slightly lower than that of the soil drought index SWCI (0.67).
In regard to mixed cover, VSDI shows a distinct advantage, with a much higher r value
(0.45), over other drought indices (r < 0.2). For vegetation cover, although VSDI showed
the lowest r value (0.42) among the three cover types, it was still the highest among the
four indices and even higher than the vegetation drought index LSWI (0.38). The relatively
lower correlation of VSDI-FWI for vegetation cover might be explained by the fact that
FWI is more indicative of soil moisture than vegetation moisture. Although we can make
the assumption above that FWI can be used as an approximation of canopy moisture, this
may in fact introduce some uncertainty and might lead to lower correlation with vegeta-
tion cover. Nevertheless, the satisfactory overall performance of VSDI represents a unique
feature that can be applied over different land-cover types and throughout plant-growing
seasons. The vegetation drought index LSWI showed the strongest response to FWI varia-
tion for vegetation cover (r = 0.38), but showed a weak and inverse correlation with FWI
at the soil surface (r = −0.11). On the contrary, SWCI, the soil drought index, gave the

Table 3. Correlation coefficient (r) between the four drought indices (VSDI, LSWI, SWCI, and
NMDI) and 25 cm FWI for three land-cover types obtained from the NDVI threshold method.

VSDI LSWI SWCI NMDI

r p-value r p-value R p-value r p-value

Soil cover NDVI < 0.2
(32 samples)

0.51 0.003 −0.11 0.557 0.67 0.000 −0.70 0.000

Mixed cover 0.2 ≤ NDVI ≤ 0.5
(1111 samples)

0.45 0.000 0.16 0.000 0.18 0.000 −0.14 0.000

Vegetation
cover

NDVI > 0.5
(376 samples)

0.42 0.000 0.38 0.000 0.16 0.003 0.40 0.003

Note: A Fisher (F) test was conducted to test this linear regression, and the bold font indicates that the linear
correlation between drought index and FWI is not significant at the 0.05 level (p-value > 0.05).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
O

kl
ah

om
a 

L
ib

ra
ri

es
] 

at
 0

0:
00

 1
5 

O
ct

ob
er

 2
01

3 



4600 N. Zhang et al.

highest correlation with FWI for soil cover (r = 0.67) but the lowest correlation for vegeta-
tion cover (r = 0.16). These phenomena are quite reasonable: since LSWI was designed as
a vegetation moisture indicator, its best performance can be expected for dense vegetation,
while for SWCI, the role of which is as a soil moisture indicator, its best performance is
expected for bare soil surfaces. In regard to NMDI, its correlation with FWI varied among
different land-cover types, with a positive r for vegetation cover and negative r for bare soil
and mixed cover.

In summary, the results from Table 3 verify the wide applicability of VSDI over differ-
ent land-cover types, and at the same time reveal the restricted applicability of other drought
indices. LSWI (the vegetation drought index) is more efficient for dense vegetation than for
a sparsely vegetated or bare soil surface, and SWCI (the soil drought index) works well at
the soil surface but not for vegetation cover. NMDI, although originally designed for both
soil and vegetation surfaces, is not suitable for drought monitoring over a large area or
during plant-growing seasons, due to its inconsistent relationship with moisture variation
among different land-cover types.

3.2.2. Time-lag analysis

Time-lag analysis is also conducted in this study to examine the promptness of drought
warning for the four drought indices. Correlation coefficients (r) with a time lag from
0 periods (no time lag) to 5 periods (40 day lag) for each index over the nine CDs are pre-
sented in Figure 7. The dotted line indicates the significant threshold at the 95% confidence
level with a 5 period lag for each CD.

It is easy to see from Figure 7 that VSDI presents the highest correlation with FWI in
the study period over nine CDs. This indicates that either no time lag exists between VSDI
and 25 cm FWI or the time lag of VSDI is less than 8 days. In this sense, VSDI can be
viewed as a real-time drought indicator. In regard to SWCI, its time-lag pattern is similar
to that of VSDI, with no time lag over nine CDs except for CD 7, where a 2–3 period lag
can be observed. In contrast, the time lag for LSWI is more prominent, and different lag
periods can be observed at different CDs. For example, the time lag of LSWI seems to be
more than 5 periods in CD 1, CD 5, and CD 6, about 1–3 periods in CD 3, CD 7, CD
8, and CD 9, and its time lag is unperceivable at CD 2 and CD 4. In regard to NMDI, it
generally showed higher correlation during the study period with FWI, with two exceptions
at CD 2 and CD 8, where lags of 5 and 3 periods were observed, respectively. In general,
compared with LSWI, SWCI, and NMDI, VSDI is more like a real-time drought indicator
with a time lag to 25 cm soil moisture of less than 8 days.

3.3. Comparison with USDM

One important function of the drought index is to quantify drought severity for the area
concerned. In this case, the VSDI drought maps of Oklahoma were produced and com-
pared with USDM maps. The USDM map is a weekly drought product developed by
a partnership of various agencies including NOAA, the US Department of Agriculture
(USDA), and the National Drought Mitigation Center (NDMC) (http://www.drought.unl.
edu/MonitoringTools/USDroughtMonitor.aspx). It combines multiple indicators, including
the Palmer drought index, the standardized precipitation index (SPI), soil moisture per-
centiles from the Climate Prediction Center (CPC), USGS weekly streamflow percentiles,
and professional input from all levels to provide a ‘big picture’ assessment of drought con-
ditions across the USA (Svoboda et al. 2002). USDM archive maps are available at http://
droughtmonitor.unl.edu/archive.html
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Figure 7. Correlation coefficients (r) between the four drought indices (VSDI, LSWI, SWCI, and
NMDI) and 25 cm FWI with time lag from 0 periods (0p lag, no time lag) to 5 periods (5p lag, 40 day
lag) over nine climate divisions.

Note: The dotted line indicates the significant threshold at the 95% confidence level with a 5 period
lag for each climate division.

The first step to producing a VSDI drought map is to identify the drought sever-
ity classes. To be comparable with USDM, six classes were determined according to
the drought categories of USDM: Normal, Abnormally Dry, Moderate Drought, Severe
Drought, Extreme Drought, and Exceptional Drought, by cross-referring to FWI (Table 4).
According to Illston, Basara, and Crawford (2004), ‘the majority of vegetation across
Oklahoma will flourish when FWI values are greater than 0.8. The vegetation will strain
and wilt from diminished moisture when FWI values are approximately 0.5, and begin to
die when FWI values are 0.3 or less’. Therefore, 0.7, 0.6, 0.5, 0.4, and 0.3 were selected as
the five FWI thresholds to classify drought status into the six classes. FWI thresholds were
then taken as the dependent variable (y) into a linear regression equation between 25 cm
FWI and VSDI based on statistics from all sites (Figure 5, y = 2.8 × x − 1.4; r = 0.54); in
this way the thresholds of VSDI (listed in Table 4) can be determined.

Since USDM is updated weekly while VSDI was calculated based on the 8 day MODIS
product, there is a slight difference in time-stamp between the two maps. During our vali-
dation period (6 March to 8 November), there were 5 days that matched between VSDI and
USDM maps (29 March, 24 May, 19 July, 13 September, and 8 November), and these are
plotted in Figure 8.

As we can see from Figure 8, overall agreement can be recognized between VSDI and
USDM maps with similar drought patterns between the two products. The onset of drought
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Table 4. Drought classification scheme of FWI and VSDI.

Drought type FWI range VSDI range

Normal FWI ≥ 0.7 VSDI ≥ 0.75
D0, Abnormally dry 0.6 ≤ FWI < 0.7 0.71 ≤ VSDI < 0.75
D1, Moderate drought 0.5 ≤ FWI < 0.6 0.68 ≤ VSDI < 0.71
D2, Severe drought 0.4 ≤ FWI < 0.5 0.64 ≤ VSDI < 0.68
D3, Extreme drought 0.3 ≤ FWI < 0.4 0.61 ≤ VSDI < 0.64
D4, Exceptional drought FWI < 0.3 VSDI < 0.61

in Oklahoma was observed in March and May, the severe drought prevalent throughout
Oklahoma was captured in July and September, and a relatively improved drought status can
also be perceived for November. In addition, VSDI shows a more detailed spatial variation
of drought conditions within each county of Oklahoma, whereas USDM presents a rela-
tively rough picture at the county level with several counties classified at the same drought
level. This may be credited as one advantage of the VSDI drought map over USDM, con-
sidering the USDM map is not designed to depict local conditions (see USDM official
website, http://droughtmonitor.unl.edu/classify.htm).

However, there are also certain differences between the two products. First, an obvious
linear segmentation can be observed in the VSDI map on 29 March in east Oklahoma. This
segmentation was mainly caused by the image mosaic in data preprocessing. Besides, on
8 November, the Oklahoma drought condition on the VSDI map seems less severe than
that on USDM maps. To explain this phenomenon, the drought summaries for that week
reported by Brian Fuchs from the National Drought Mitigation Center from the USDM
website (http://droughtmonitor.unl.edu/archive.html) are cited below.

A series of rain events over the last week, with the latest coming at the end of the
current US Drought Monitor period, allowed for improvements over Oklahoma and into
the extreme northern counties of Texas Improvements were made in eastern and central
Oklahoma, where a categorical improvement was made over areas receiving the bulk of the
precipitation.

Thus the overall improved drought status on the VSDI map can be attributed to the
precipitation that week, especially for eastern and central Oklahoma, which are indicated
as normal or abnormally dry on the VSDI map. Since VSDI is a single moisture indicator,
it may have a more direct and rapid response to precipitation than the multi-indicator com-
bined USDM product (e.g. the former includes several climatologically based indicators),
which still shows a lingering drought over Oklahoma. The VSDI classification scheme can
also contribute to subtle differences between VSDI and USDM maps. For reference, the
VSDI thresholds in this study were readily calculated from linear regression using empiri-
cally defined FWI thresholds. A specific set of thresholds for other regions or other methods
could be explored for drought classification in a future study.

4. Summary and conclusion

In this article, a simple but effective method for agricultural drought monitoring, the VSDI,
was developed. This index was designed by exploiting the difference between moisture-
sensitive bands (SWIR and red) and a moisture reference band (blue), and is expected to
complement the scarcity of agricultural drought monitoring over different land-cover types
and through the plant-growing season. The validation of VSDI was carried out in Oklahoma
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VSDI drought map

VSDI drought map

VSDI drought map

VSDI drought map

VSDI drought map

29 March 2011 29 March 2011

24 May 2011 24 May 2011

19 July 2011 19 July 2011

13 September 2011 13 September 2011

8 November 2011 8 November 2011

Normal

D0 Abnormally drought

D1 Moderate drought

D2 Severe drought

D3 Extreme drought

D4 Exceptional drought
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D0 Abnormally drought

http://drought.unl.edu/dm

http://drought.unl.edu/dm

http://drought.unl.edu/dm
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US drought monitor

US drought monitor

US drought monitor
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Figure 8. Five matched dates between VSDI 8 day drought maps and USDM weekly maps of
Oklahoma on 29 March, 24 May, 19 July, 13 September, and 8 November.

Note: VSDI maps showed overall good agreement with USDM results, and can reveal finer spatial
variation of drought than USDM.
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using soil moisture measurements from 49 Mesonet stations. The correlation coefficient
between VSDI and 25 cm soil moisture (FWI) was calculated and compared with LSWI,
SWCI, and NMDI over 49 sites and nine CDs. The NDVI threshold method was applied
to examine the applicability of VSDI and three other indices over different land-cover
types. Time-lag analysis was also conducted over nine CDs to evaluate the time response
to moisture variation for the four drought indices. Finally, a drought classification scheme
based on VSDI is suggested in this article, and the VSDI drought maps were produced
and compared with USDM maps. Based on the above analysis, we came to the following
conclusions.

(1) Taking advantage of multi-spectral information, VSDI has a clear biophysical con-
notation and consistently characterizes well the moisture dynamics over both soil
and vegetation surfaces. Compared with LSWI, SWCI, and NMDI, VSDI presented
the strongest correlation with 25 cm FWI over 49 stations and nine climate systems
throughout the plant-growing season.

(2) The NDVI threshold method reveals that VSDI is applicable over different land-
cover types. This is a major advantage over the current optical drought indices,
since LSWI (the vegetation moisture index) performs best for vegetation surfaces,
while SWCI is efficient only for bare soil cover, and NMDI, which was origi-
nally designed to monitor both soil and vegetation moisture, has an inconsistent
correlation with moisture variation for different land surfaces.

(3) Time-lag analysis over nine CDs in Oklahoma indicated that VSDI has no time lag
(or its time lag is within 8 days) in response to soil moisture variation in Oklahoma.
Other indices displayed greater or less time lag according to CD. Therefore, VSDI
may be used as a real-time drought indicator and in future work other study areas
should be considered to further validate this feature.

(4) The good agreement between VSDI drought maps and USDM maps indicates the
favourable performance of VSDI in drought monitoring. VSDI maps display finer
spatial variation of drought conditions compared with USDM products, and VSDI
may be applied for drought monitoring at both the regional scale and above.

(5) The main limitation of VSDI is that it was developed using only optical spectral
bands and does not take into account temperature information, which is an impor-
tant factor in drought development. Therefore, this index may not perform well in
drought-prone areas where temperature is the major constraint rather than precipi-
tation. This point is briefly discussed in this article. In our future work, other study
areas will be included to validate the performance of VSDI over different climate
systems, and the thermal band may be introduced to VSDI to enhance its ability in
drought monitoring and warning.

(6) Further work is still required to evaluate the performance of VSDI. The following
issues will be considered and addressed in our follow-up work: (1) discussion of
point-to-point variability in in situ soil moisture (or FWI) and how it affects FWI–
VSDI correlation; (2) evaluation of VSDI from the viewpoint of meteorological
drought by comparing it with meteorological data and drought indices (such as
precipitation measurements, SPI, or z-score index); and (3) incorporation of soil
and vegetation type in the analysis of the time-lag effect of VSDI and other drought
indices.
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